
Searching	in	a	Graph

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	8.4

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Introduction

• Many	problems	in	computer	science	involve	
directed	graphs.

• General	recursion	is	an	essential	tool	for	
computing	on	graphs.

• In	this	lesson	we	will	design	a	program	for	an	
important	problem	on	graphs,	using	general	
recursion

• The	algorithm	we	will	develop	has	many	other	
applications.

2

Learning	Objectives

• At	the	end	of	this	lesson	you	should	be	able	
to:
– explain	what	a	directed	graph	is,	and	what		it	
means	for	one	node	to	be	reachable	from	another

– explain	what	a	closure	problem	is
– explain	the	worklist algorithm
– write	similar	programs	for	searching	in	graphs.

3

What's	a	graph?

• You	should	be	familiar	with	the	notion	of	a	
graph	from	your	previous	courses.		

• A	graph	consists	of	some	nodes	and	some	
edges.	

• We	will	be	dealing	with	directed	graphs,	in	
which	each	edge	has	a	direction.		We	will	
indicate	the	direction	with	an	arrow.

4

A	Graph

5

nodes:	A,	B,	C,	etc.
edges:
(A,B),	(A,C),(A,D),	etc.

A

G

FE

DCB

successors	of	a	node

6

The	successors	of	a	node	
are	the	nodes	that	it	can	
get	to	by	following	one	
edge.

(successors	A)	=	{B,C,D}
(successors	D)	=	{C,F}

A

G

FE

DCB

all-successors of	a	set	of	nodes

7

all-successors of	a	set	of	
nodes	are	all	the	
successors	of	any	of	the	
nodes	in	the	set

(all-successors	{})	=	{}

(all-successors	{A,D})	
=	{B,C,D,F}

A

G

FE

DCB

Paths	in	a	Graph

8

paths:	
(A,C,E)
(B,C,E,G)
(A,D,C,E)
(A)

non-paths:
(D,	A)	
(A,C,G)
(A,C,D,E)
(A,A)

A

G

FE

DCB

A	path	is	a	sequence	of	nodes	
that	are	connected	by	edges.		
Notice	that	the	node	A	by	
itself	is	a	path,	since	there	are	
no	edges	to	check.		On	the	
other	hand,	(A,A)	is	not	a	
path,	since	there	is	no	edge	
from	A	to	itself.

Cycles

9

A

G

FE

DCB

This	graph	has	a	cycle:	a	
path	from	the	node	B	to	
itself.		Graphs	without	
cycles	are	said	to	be	
acyclic.
For	this	lesson,	our	
graphs	are	allowed	to	
have	cycles.

Reachability

10

A

G

FE

DCB

Nodes	reachable	from	D:
{B,C,D,E,F,G}
Not	reachable:
{A}

One	node	is	reachable from	
another	if	there	is	a	path	
from	the	one	node	to	the	
other.

D	is	reachable	from	itself	by	a	path	of	
length	0,		but	not	by	any	other	path	

Another	classic	application	of	general	
recursion

reachables :
Graph SetOfNode -> SetOfNode

GIVEN: a graph and a set of nodes
RETURNS: the set of nodes that is
reachable from the given set of
nodes

11

Definition

A	node	t	is	reachable	from	a	node	s	iff either
1. t	=	s
2. there	is	some	node	s'	such	that

a. s'	is	a	successor	of	s
b. t	is	reachable	from	s'

12

What	does	this	definition	tell	us?

• If	S	is	a	set	of	nodes,	then	(reachables S)	has	
the	property	that:
– IF	node	n	is	in	(all-successors	(reachables S))
– THEN	n	is	already	in	(reachables S).

• Why?		Because	if	n	is	a	successor	of	a	node	
reachable	from	S,	then	n	is	itself	reachable	
from	S

13

Another	way	of	looking	at	this:

• If	S	is	a	set	of	nodes,	then
– (reachables S)	is	the	smallest	set	R	of	nodes	such	
that	

1. S	is	a	subset	of	R
2. (all-successors	R)	is	a	subset	of	R.

14

Growing	(reachables S):	not	done	yet

15

S

This	R	is	not	closed	under	
successors:	more	reachables to	
be	found!

Growing	(reachables S):	done!

16

S

The	R	contains	S	as	a	subset	and	is	
closed	under	successors.		So	it	is	
(reachables S)

Closure	problems

• This	is	called	a	"closure	problem":	we	want	to	
find	the	smallest	set	R	which	contains	our	
starting	set	S	and	which	is	closed	under	some	
operation

• In	this	case,	we	want	to	find	the	smallest	set	
that	contains	our	starting	set	of	nodes,	and	
which	is	closed	under	all-successors.

17

Assumptions

• We	assume	we've	got	data	definitions	for	
Node	and	Graph,	and	functions
– node=? : Node Node -> Boolean
– successors :

Node Graph -> SetOfNode
– all-successors :

SetOfNode Graph -> SetOfNode

• We	also	assume	that	our	graph	is	finite.

18

Initial	Solution
;; reachables: SetOfNode Graph -> SetOfNode
;; GIVEN: A set of nodes in a graph
;; RETURNS: the set of nodes reachable from the starting nodes
;; STRATEGY: recur on (nodes U their immediate successors)
;; HALTING MEASURE:
;; # of nodes in the graph that are NOT in the set 'nodes'.
(define (reachables nodes graph)

(local
((define candidates (all-successors nodes graph)))
(cond

[(subset? candidates nodes) nodes]
[else (reachables

(set-union candidates nodes)
graph)])))

19

if	'nodes'	is	closed	
under	all-successors,	
then	we're	done

Otherwise,	add	the	candidates	to	the	nodes,	and	try	again

Problem	with	this	algorithm

• We	keep	looking	at	the	same	nodes	over	and	
over	again:
– we	always	say	(all-successors nodes),	but	
we've	seen	most	of	those	nodes	before.

20

A	Better	Idea:	keep	track	of	which	
nodes	are	new

21

S

only	need	to	explore	nodes	in	this	region– all	
others	are	accounted	for.

Do	this	with	an	extra	argument	and	an	
invariant

22

S

nodes

newest	=	the	most	
recently	added	
elements	of	'nodes'

Version	with	invariant
;; reachables1 : SetOfNode SetOfNode Graph
;; GIVEN: two sets of nodes, 'nodes' and 'newest' in a graph
;; WHERE: newest is a subset of nodes
;; AND: newest is the most recently added set of nodes
;; RETURNS: the set of nodes reachable from 'nodes'.
;; STRATEGY: recur on successors of newest that are not already in nodes;
;; halt when no more successors
;; HALTING MEASURE:
;; # of nodes in the graph that are NOT in the set 'nodes'.

(define (reachables1 nodes newest graph)
(local
((define candidates (set-diff

(all-successors newest graph)
nodes)))

(cond
[(empty? candidates) nodes]
[else (reachables1

(append candidates nodes)
candidates
graph)])))

23

Since	candidates	is	disjoint	
from	nodes,	we	can	replace	the	
set-union	with	append.

Initializing	the	invariant

;; we initialize newest to nodes since
;; initially all the nodes are new.

;; STRATEGY: Call more general function

(define (reachables nodes graph)
(reachables1 nodes nodes graph))

24

This	is	called	the	"worklist"	algorithm

• It	is	used	in	many	applications
– in	compiler	analysis
– in	AI	(theorem	proving,	etc.)

25

You	could	use	this	to	define	path?
;; path? : Graph Node Node -> Boolean
;; GIVEN: a graph and a source and a
;; target node in the graph
;; RETURNS: true iff there is a path in g
;; from src to tgt
;; STRATEGY: call more general function
(define (path? graph src tgt)
(member tgt (reachables (list src) graph)))

26

But	for	that,	you	don't	need	to	build	
the	whole	set

(define (path? graph src tgt)
(local
((define (reachable-from? newest nodes)

;; RETURNS: true iff there is a path from src to tgt in graph
;; INVARIANT: newest is a subset of nodes
;; AND:
;; (there is a path from src to tgt in graph)
;; iff (there is a path from some node in newest to tgt)
;; STRATEGY: recur on successors of newest; halt when tgt is found.
;; HALTING MEASURE: the number of graph nodes _not_ in 'nodes'
(cond
[(member tgt newest) true]
[else (local

((define candidates (set-diff
(all-successors newest graph)
nodes)))

(cond
[(empty? candidates) false]
[else (reachable-from?

candidates
(append candidates nodes))]))])))

(reachable-from? (list src) (list src))))

27

Just	watch	for	tgt to	show	up	in	newest

Look	carefully	at	this	invariant.

Can	you	check	to	see	that	the	
invariant	is	true	at	this	call?

Why	is	the	invariant	true	again	at	this	
call?

Another	topic:	changing	the	data	
representation

;; reachables: SetOfNode Graph -> SetOfNode
(define (reachables nodes graph)
(local
((define candidates (all-successors nodes graph)))
(cond
[(subset? candidates nodes) nodes]
[else (reachables

(set-union candidates nodes)
graph)])))

28

Notice	that	the	only	 thing	we	do	with	graph	is	to	
pass	it	to	all-successors.

So	let’s	pass	in	the	graph’s	all-
successors	function

;; reachables: SetOfNode (SetOfNode -> SetOfNode)
;; -> SetOfNode
(define (reachables nodes all-successors-fn)
(local
((define candidates (all-successors-fn nodes)))
(cond
[(subset? candidates nodes) nodes]
[else (reachables

(set-union candidates nodes)
all-successors-fn)])))

29

How	do	you	build	an	all-successors-
fn?

;; You could do it from a data structure:

;; Graph -> (SetOfNode -> SetOfNode)
(define (make-all-successors-fn g)
(lambda (nodes)
(all-successors nodes g)))

30

Or	you	could	avoid	building	the	data	
structure	entirely

• Just	define	a	successors	function	from	scratch,	
and	then	define	all-successors	using	a	HOF.

• Good	thing	to	do	if	your	graph	is	very	large–
e.g.	Rubik’s	cube.	

31

Example	of	an	“implicit	graph”
;; Int -> SetOfInt
;; GIVEN: an integer
;; RETURNS: the list of its successors in the implicit graph.
;; For this graph, this is always a set (no repetitions)
(define (successors1 n)

(if (<= n 0)
empty
(local

((define n1 (quotient n 3)))
(list n1 (+ n1 5)))))

32

A	portion	 of	this	graph….

From	Examples/08-5a-implicit-graphs.rkt 50

72

6

1

;; all-successors1 : SetOfInt -> SetOfInt
;; GIVEN: A set of nodes
;; RETURNS: the set of all their
successors in our implicit graph
;; STRATEGY: Use HOFs map, then unionall.
(define (all-successors1 ns)
(unionall (map successors1 ns)))

33

Here’s	a	function	you	could	
pass	to	reachables.	

Summary

• We've	applied	General	Recursion	to	an	
important	problem:	graph	reachability

• We	considered	the	functions	we	needed	to	
write	on	graphs	in	order	to	choose	our	
representation(s).

• We	used	list	abstractions	to	make	our	program	
easier	to	write

34

Learning	Objectives

• You	should	now	be	able	to:
– explain	what	a	directed	graph	is,	and	what	it	
means	for	one	node	to	be	reachable	from	another

– explain	how	the	function	for	reachability	works.
– explain	what	a	closure	problem	is
– explain	the	worklist algorithm
– write	similar	programs	for	searching	in	graphs.

35

Next	Steps

• Study	08-5-reachability.rkt	and	08-5a-implicit-
graphs.rkt	in	the	Examples	folder.

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practice	8.4

36

